What is Few Shot Learning? Few-shot learning is a machine-learning paradigm where models are trained with limited labeled data.
Papers and Code
Apr 24, 2025
Abstract:Image inpainting is a technique used to restore missing or damaged regions of an image. Traditional methods primarily utilize information from adjacent pixels for reconstructing missing areas, while they struggle to preserve complex details and structures. Simultaneously, models based on deep learning necessitate substantial amounts of training data. To address this challenge, an encoding strategy-inspired diffusion model with few-shot learning for color image inpainting is proposed in this paper. The main idea of this novel encoding strategy is the deployment of a "virtual mask" to construct high-dimensional objects through mutual perturbations between channels. This approach enables the diffusion model to capture diverse image representations and detailed features from limited training samples. Moreover, the encoding strategy leverages redundancy between channels, integrates with low-rank methods during iterative inpainting, and incorporates the diffusion model to achieve accurate information output. Experimental results indicate that our method exceeds current techniques in quantitative metrics, and the reconstructed images quality has been improved in aspects of texture and structural integrity, leading to more precise and coherent results.
* 11 pages,10 figures,Submit to tcsvt
Via

Apr 24, 2025
Abstract:Diabetic foot ulcers (DFUs) pose a significant challenge in healthcare, requiring precise and efficient wound assessment to enhance patient outcomes. This study introduces the Attention Diffusion Zero-shot Unsupervised System (ADZUS), a novel text-guided diffusion model that performs wound segmentation without relying on labeled training data. Unlike conventional deep learning models, which require extensive annotation, ADZUS leverages zero-shot learning to dynamically adapt segmentation based on descriptive prompts, offering enhanced flexibility and adaptability in clinical applications. Experimental evaluations demonstrate that ADZUS surpasses traditional and state-of-the-art segmentation models, achieving an IoU of 86.68\% and the highest precision of 94.69\% on the chronic wound dataset, outperforming supervised approaches such as FUSegNet. Further validation on a custom-curated DFU dataset reinforces its robustness, with ADZUS achieving a median DSC of 75\%, significantly surpassing FUSegNet's 45\%. The model's text-guided segmentation capability enables real-time customization of segmentation outputs, allowing targeted analysis of wound characteristics based on clinical descriptions. Despite its competitive performance, the computational cost of diffusion-based inference and the need for potential fine-tuning remain areas for future improvement. ADZUS represents a transformative step in wound segmentation, providing a scalable, efficient, and adaptable AI-driven solution for medical imaging.
* 12 pages, 8 figures, journal article
Via

Apr 24, 2025
Abstract:Data-driven model predictive control (MPC) has demonstrated significant potential for improving robot control performance in the presence of model uncertainties. However, existing approaches often require extensive offline data collection and computationally intensive training, limiting their ability to adapt online. To address these challenges, this paper presents a fast online adaptive MPC framework that leverages neural networks integrated with Model-Agnostic Meta-Learning (MAML). Our approach focuses on few-shot adaptation of residual dynamics - capturing the discrepancy between nominal and true system behavior - using minimal online data and gradient steps. By embedding these meta-learned residual models into a computationally efficient L4CasADi-based MPC pipeline, the proposed method enables rapid model correction, enhances predictive accuracy, and improves real-time control performance. We validate the framework through simulation studies on a Van der Pol oscillator, a Cart-Pole system, and a 2D quadrotor. Results show significant gains in adaptation speed and prediction accuracy over both nominal MPC and nominal MPC augmented with a freshly initialized neural network, underscoring the effectiveness of our approach for real-time adaptive robot control.
Via

Apr 23, 2025
Abstract:In neuroscience research, achieving single-neuron matching across different imaging modalities is critical for understanding the relationship between neuronal structure and function. However, modality gaps and limited annotations present significant challenges. We propose a few-shot metric learning method with a dual-channel attention mechanism and a pretrained vision transformer to enable robust cross-modal neuron identification. The local and global channels extract soma morphology and fiber context, respectively, and a gating mechanism fuses their outputs. To enhance the model's fine-grained discrimination capability, we introduce a hard sample mining strategy based on the MultiSimilarityMiner algorithm, along with the Circle Loss function. Experiments on two-photon and fMOST datasets demonstrate superior Top-K accuracy and recall compared to existing methods. Ablation studies and t-SNE visualizations validate the effectiveness of each module. The method also achieves a favorable trade-off between accuracy and training efficiency under different fine-tuning strategies. These results suggest that the proposed approach offers a promising technical solution for accurate single-cell level matching and multimodal neuroimaging integration.
* 23 pages, 9 figures, submitted to arXiv for public access
Via

Apr 24, 2025
Abstract:Despite significant interest and advancements in humanoid robotics, most existing commercially available hardware remains high-cost, closed-source, and non-transparent within the robotics community. This lack of accessibility and customization hinders the growth of the field and the broader development of humanoid technologies. To address these challenges and promote democratization in humanoid robotics, we demonstrate Berkeley Humanoid Lite, an open-source humanoid robot designed to be accessible, customizable, and beneficial for the entire community. The core of this design is a modular 3D-printed gearbox for the actuators and robot body. All components can be sourced from widely available e-commerce platforms and fabricated using standard desktop 3D printers, keeping the total hardware cost under $5,000 (based on U.S. market prices). The design emphasizes modularity and ease of fabrication. To address the inherent limitations of 3D-printed gearboxes, such as reduced strength and durability compared to metal alternatives, we adopted a cycloidal gear design, which provides an optimal form factor in this context. Extensive testing was conducted on the 3D-printed actuators to validate their durability and alleviate concerns about the reliability of plastic components. To demonstrate the capabilities of Berkeley Humanoid Lite, we conducted a series of experiments, including the development of a locomotion controller using reinforcement learning. These experiments successfully showcased zero-shot policy transfer from simulation to hardware, highlighting the platform's suitability for research validation. By fully open-sourcing the hardware design, embedded code, and training and deployment frameworks, we aim for Berkeley Humanoid Lite to serve as a pivotal step toward democratizing the development of humanoid robotics. All resources are available at https://lite.berkeley-humanoid.org.
* Accepted in Robotics: Science and Systems (RSS) 2025
Via

Apr 23, 2025
Abstract:This paper introduces a novel federated learning framework termed LoRa-FL designed for training low-rank one-shot image detection models deployed on edge devices. By incorporating low-rank adaptation techniques into one-shot detection architectures, our method significantly reduces both computational and communication overhead while maintaining scalable accuracy. The proposed framework leverages federated learning to collaboratively train lightweight image recognition models, enabling rapid adaptation and efficient deployment across heterogeneous, resource-constrained devices. Experimental evaluations on the MNIST and CIFAR10 benchmark datasets, both in an independent-and-identically-distributed (IID) and non-IID setting, demonstrate that our approach achieves competitive detection performance while significantly reducing communication bandwidth and compute complexity. This makes it a promising solution for adaptively reducing the communication and compute power overheads, while not sacrificing model accuracy.
* accepted for publication at IEEE IWCMC 2025
Via

Apr 23, 2025
Abstract:Soft continuum arms (SCAs) soft and deformable nature presents challenges in modeling and control due to their infinite degrees of freedom and non-linear behavior. This work introduces a reinforcement learning (RL)-based framework for visual servoing tasks on SCAs with zero-shot sim-to-real transfer capabilities, demonstrated on a single section pneumatic manipulator capable of bending and twisting. The framework decouples kinematics from mechanical properties using an RL kinematic controller for motion planning and a local controller for actuation refinement, leveraging minimal sensing with visual feedback. Trained entirely in simulation, the RL controller achieved a 99.8% success rate. When deployed on hardware, it achieved a 67% success rate in zero-shot sim-to-real transfer, demonstrating robustness and adaptability. This approach offers a scalable solution for SCAs in 3D visual servoing, with potential for further refinement and expanded applications.
* The 7th Annual Learning for Dynamics & Control Conference (L4DC) 2025
Via

Apr 23, 2025
Abstract:While non-prehensile manipulation (e.g., controlled pushing/poking) constitutes a foundational robotic skill, its learning remains challenging due to the high sensitivity to complex physical interactions involving friction and restitution. To achieve robust policy learning and generalization, we opt to learn a world model of the 3D rigid body dynamics involved in non-prehensile manipulations and use it for model-based reinforcement learning. We propose PIN-WM, a Physics-INformed World Model that enables efficient end-to-end identification of a 3D rigid body dynamical system from visual observations. Adopting differentiable physics simulation, PIN-WM can be learned with only few-shot and task-agnostic physical interaction trajectories. Further, PIN-WM is learned with observational loss induced by Gaussian Splatting without needing state estimation. To bridge Sim2Real gaps, we turn the learned PIN-WM into a group of Digital Cousins via physics-aware randomizations which perturb physics and rendering parameters to generate diverse and meaningful variations of the PIN-WM. Extensive evaluations on both simulation and real-world tests demonstrate that PIN-WM, enhanced with physics-aware digital cousins, facilitates learning robust non-prehensile manipulation skills with Sim2Real transfer, surpassing the Real2Sim2Real state-of-the-arts.
Via

Apr 22, 2025
Abstract:Capturing symmetric (e.g., country borders another country) and antisymmetric (e.g., parent_of) relations is crucial for a variety of applications. This paper tackles this challenge by introducing a novel Wikidata-derived natural language inference dataset designed to evaluate large language models (LLMs). Our findings reveal that LLMs perform comparably to random chance on this benchmark, highlighting a gap in relational understanding. To address this, we explore encoder retraining via contrastive learning with k-nearest neighbors. The retrained encoder matches the performance of fine-tuned classification heads while offering additional benefits, including greater efficiency in few-shot learning and improved mitigation of catastrophic forgetting.
Via

Apr 22, 2025
Abstract:Natural disasters often result in a surge of social media activity, including requests for assistance, offers of help, sentiments, and general updates. To enable humanitarian organizations to respond more efficiently, we propose a fine-grained hierarchical taxonomy to systematically organize crisis-related information about requests and offers into three critical dimensions: supplies, emergency personnel, and actions. Leveraging the capabilities of Large Language Models (LLMs), we introduce Query-Specific Few-shot Learning (QSF Learning) that retrieves class-specific labeled examples from an embedding database to enhance the model's performance in detecting and classifying posts. Beyond classification, we assess the actionability of messages to prioritize posts requiring immediate attention. Extensive experiments demonstrate that our approach outperforms baseline prompting strategies, effectively identifying and prioritizing actionable requests and offers.
Via
